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MEASUREMENTS O F  RFlSONANT CHARGE EXCHANGE CROSS SECTIONS 

IN NITROGEN AND ARGON BETWEEN 0.5 AND 17 EV 

By B i l l y  J .  Nichols and Fred C . Witteborn 
Ames Research Center 

SUMMARY 


+The cross  sec t ions  f o r  charge t r a n s f e r  between N 2  molecules and N 2  ions 
and A atoms and A' ions have been determined within t h e  energy range 0.5 t o  
17 eV. A knowledge of charge exchange cross  sec t ions  of atmospheric ions i n  
t h i s  energy range i s  required f o r  ca lcu la t ing  thermal conduct ivi ty  and, t o  a 
l e s s e r  ex ten t ,  other  t ranspor t  p roper t ies  a t  high temperatures.  While ions 
s tudied i n  t h i s  research are present  i n  only small quan t i t i e s  i n  p r a c t i c a l  s i t
uat ions,  measurements of t h e i r  c ross  sec t ions  were useful i n  developing tech
niques f o r  studying o ther  ions and f o r  comparing t h e  results with t h e o r e t i c a l  
ca lcu la t ions  of resonant charge exchange cross  sec t ions .  The va r i a t ion  of t he  
cross  sec t ion  ((5) with energy (E)  f o r  each of these  processes may be approxi
mately represented by an expression of t he  form 

which i s  c h a r a c t e r i s t i c  of symmetric resonance charge t r a n s f e r .  If E i s  
measured i n  e lec t ron  v o l t s ,  then the  values obtained f o r  t h e  ni t rogen reac t ion  
were a = 6 . 4 8 K ~ O - ~em, and b = 0 . 2 4 X ~ O - ~em, and f o r  t he  argon reac t ion  
a = 7.49X10-8 em, and b = 0.73x10-8em. 

Departures from the  logari thmic behavior were noted i n  the  ni t rogen da ta ,  
but  not i n  the  argon d a t a .  These d i f fe rences  consis ted of a small hump at  an 
incident  ion energy of 8.5 e V  and a s teady increase of o over the  logarithmic 
expression below 3 eV. A t  1 eV the  measured cross  sec t ion  between N2 and N2+ 
w a s  59XLO-z em2. 

INTRODUCTION 

Although a g rea t  d e a l  of charge exchange da ta  has been published f o r  ion 
energies above 1 0  o r  20 eV, almost none has been obtained between 0.5 and 
10 e V .  Unfortunately it i s  p rec i se ly  i n  t h i s  region t h a t  aerodynamicists are 
most i n t e re s t ed .  P a r t i c l e  c o l l i s i o n s  a t  such energies  predominate between 
5,000° and 100,OOOo K ,  temperatures f o r  which t r anspor t  p roper t ies  i n  gases 
m u s t  be known i n  order t o  p red ic t  t he  heat ing of vehic les  en ter ing  the  atmos
phere a t  high speeds. The importance of charge exchange cross  sec t ions  i n  
ca lcu la t ing  t r anspor t  p rope r t i e s  a t  high temperatures i s  discussed by Mason, 
Vanderslice, and Yos  ( r e f .  1). Their t h e o r e t i c a l  paper p red ic t s  t h a t  charge 
exchange is  of ten the dominant f a c t o r  i n  thermal conduction. Techniques f o r  



working i n  the  des i red  energy range as wel l  as f o r  determining cross sect ions 
f o r  two reac t ions  a l ready  s tudied are described i n  t h i s  r epor t .  

Excellent surveys of cross-section da ta ,  techniques, and theory a r e  given 
i n  r ecen t ly  published books by McDaniel ( r e f .  2 )  and Hasted ( r e f .  3 ) .  These 
a l s o  include extensive b ib l iographies .  While almost no experimental values of 
charge exchange cross  sec t ions  below 10 e V  a r e  ava i lab le  f o r  c o l l i s i o n s  among 
atmospheric ions,  t h e o r e t i c a l  p red ic t ions  f o r  soine resonant reac t ions  a r e  
ava i l ab le  ( r e f s .  4 and 5 ) .  Resonant reac t ions  a r e  those in  which the  t o t a l  
i n t e r n a l  energy of t he  system i s  the  same before and a f t e r  t he  c o l l i s i o n .  This 
condition would be expected f o r  t he  two reac t ions  s tudied i n  t h i s  report :

' 
N2 + N2 + N2 + N2' 

and 

A' + A -+ A + A' 

Rapp and Francis ( r e f .  4) gave t h e o r e t i c a l  values of  the  argon reac t ion  down 
t o  1 eV. Dalgarno ( r e f .  6)  used mobil i ty  da ta  taken a t  300° K t o  deduce low 
energy charge exchange cross  sect ions (0 .1  t o  1000 eV) f o r  argon and other  
a toms . 

The l ack  of cross-section da ta  a t  low energies  i s  due t o  severa l  experi
mental d i f f i c u l t i e s  c h a r a c t e r i s t i c  of work with low-energy ion beams. The 
most se r ious  i s  spreading of the  ion beam induced by the  mutual repuls ion of 
the  ions.  Even if  t he  beam could be contained by some applied f i e l d ,  the  
space charge would cause the  p o t e n t i a l  energy of ions a t  the  center of the 
beam t o  d i f f e r  from the  energy of those near t h e  edge. This would give r i s e  
t o  d i f fe rences  i n  the  k i n e t i c  energy of p a r t i c l e s  i n  the  beam and would r e s u l t  
i n  l o s s  of knowledge of t he  c o l l i s i o n  energy f o r  the  beam in t e rac t ing  with a 
gas .  Thus the  dens i ty  of the  ion beam current  must be kept small enough t h a t  
t he  va r i a t ion  i n  po ten t i a l  energy due t o  space charge across  the  beam i s  much 
smaller than the  k i n e t i c  energy of the  co l l i d ing  p a r t i c l e s .  In  p rac t i ce  t h i s  
means a small ion current  ( e  .g ., 3XLO-8 A)  f o r  1 eV N2' ions i f  t h e i r  energy 
spread i s  t o  be l e s s  than 10 percent .  The d i f f i c u l t i e s  of working with small 
ion currents  have been g r e a t l y  a l l e v i a t e d  i n  recent  years through the  develop
ment of b e t t e r  e lectrometers ,  the  use of modulated beam techniques, and the 
use of s ing le  ion counting devices .  

The low-energy ion beam faces  d i f f i c u l t i e s  other  than space charge 
e f f e c t s .  It i s  r e a d i l y  a f fec ted  by s t r a y  magnetic f i e l d s  which must e i t h e r  be 
shielded from o r  incorporated i n  the  guidance of the  ions .  Stray e l e c t r i c  
f i e l d s  can be shielded t o  some exten t ,  but  contact po ten t i a l  d i f fe rences  e x i s t  
even along grounded metal sur faces .  I f  t he  t a r g e t  and other  surfaces bounding 
the  slow ion beam a r e  coated with a uniform deposi t  of the proper conductor, 
contact po ten t i a l  d i f fe rences  may be reduced t o  values well below 0 .1  V .  The 
choice of mater ia l  is important s ince even f r e sh ly  evaporated f i lms of some 
metals exhib i t  contact po ten t i a l  d i f fe rences  of a few t en ths  of a v o l t  ( r e f .  7). 

A d i f f i c u l t y  i n  in t e rp re t ing  cross-section da ta  a t  a l l  energies i s  caused 
by the  presence of exci ted ions i n  the  beam. The e f f e c t  has been s tudied 
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experimentally above 40 eV ( r e f s .  8,9). I n  general ,  an exci ted ion w i l l  have 
a d i f f e r e n t  charge exchange cross  sec t ion  than a ground state ion. Consider a 
slow exc i ted  molecular ni t rogen ion N2* co l l i d ing  with t h e  ground state mole
cule  N2. Two reac t ions  are possible:  

* 
N2+* + N 2  + N 2  + N2 

+ 

The f irst  r eac t ion  is  resonant and thus has a cross  sec t ion  t h a t  increases  as 
the  energy decreases.  I ts  value need not  be the  same as t h a t  of t h e  ground 
state r eac t an t s .  The second i s  probably nonresonant. Its cross  sec t ion  would 
be zero a t  s u f f i c i e n t l y  low energy but would r i se  t o  a maximum somewhere i n  t h e  
the low energy range. Thus t h e  presence of exci ted ions i n  t h e  incident  beam 
w i l l  l e ad  t o  a cross sec t ion  t h a t  i s  a c t u a l l y  a mixture of cross  sec t ions  of 
severa l  d i f f e r e n t  reac t ions .  

A novel technique w a s  used t o  measure charge exchange cross  sec t ions  
between 0.3 and 17 e V .  A mass analyzed monoenergetic beam of ions w a s  slowed 
down e l e c t r o s t a t i c a l l y  t o  t h e  des i red  energy and d i rec ted  i n t o  a small reac
t i o n  chamber i n  which t h e  t a r g e t  gas pressure w a s  high enough t o  charge 
exchange a s ign i f i can t  f r a c t i o n  of t he  beam. In the  reac t ion  chamber, t he  
beam w a s  constrained by an a x i a l  magnetic f i e l d  which caused a l l  the  ions mov
ing toward the  t a r g e t  ( ion  co l l ec to r  p l a t e )  t o  be measured as a current  
whether or not they had suffered c o l l i s i o n s .  The po ten t i a l  of the  t a r g e t  w a s  
r a i sed  s l i g h t l y  so t h a t  t he  thermal ions formed by charge exchange i n  the  
reac t ion  chamber could be repe l led  and thus dis t inguished from the  faster ions 
of t he  incident  beam. Charge exchange cross  sect ions may be r e a d i l y  calcu
l a t e d  from the measured cur ren ts  of thermal and incident  ions together  with 
t h e  known path length and pressure i n  the  reac t ion  chamber. 

The apparatus and techniques for low-energy cross-section measurements 
a r e  described i n  t h i s  r epor t ,  along with the  experimentally measured cross  
sec t ions  f o r  t he  reac t ions  

A+ -+ A + A i- A' 

and 

between 0.3 and 17 eV. The curves for cross  sec t ion  versus energy follow t h e  
expected 

form, except f o r  some small humps i n  t h e  ni t rogen curves which are in te rpre ted
~ 

i n  t e r m s  of v ib ra t iona l ly  exc i ted  incident  ions.  
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measured inside t h e  reac t ion  chamber by a McLeod gage. These pressures w e r e  I 

always below 10-3 t o r r ,  so  t h a t  fast p a r t i c l e s  were l i k e l y  t o  experience no 
more than one reac t ion .  

Under conditions control led as described above, t he  acce lera tor  present ly  
de l ive r s  10-8A of IV2+ t o  a 1em2 spot on the  t a r g e t  a t  an energy of 10 eV 
with a t o t a l  energy dispers ion of 0.8 e V .  

METHOD O F  DATA ANALYSIS 

Charge exchange cross  sect ions were computed from the  measured current  due 
t o  t he  formation of s l o w  ions upon passage of a fast ion beam through a thermal 
gas of known dens i ty .  The current t o  t h e  t a r g e t  consisted of the  sum of the  
primary ions t h a t  d id  not su f f e r  a co l l i s ion ,  ions e l a s t i c a l l y  sca t te red  
(within l i m i t s  discussed l a t e r  i n  t h i s  r epor t )  and 1/2 of the  thermal ions t h a t  
were formed through the  charge exchange process.  (The other  thermal ions move 
away f r o m t h e  t a r g e t  because of t h e i r  random motion.) The slow ion current 
was determined by measuring the  drop i n  t a r g e t  current caused by appl ica t ion  
of a small retarding vol tage,  V t ,  t o  t h e  t a r g e t  r e l a t i v e  t o  the  react ion cham
b e r .  Typical p l o t s  of  t a r g e t  current versus V t  are shown i n  f igu re  4(a) for 
pressures of 10-6 and 10-3 t o r r  i n  the  reac t ion  chamber. A s  can be seen with 
the  a i d  of t h e  expanded voltage sca le  i n  f igu re  4(b), t he  drop i n  t a r g e t  cur
r en t  occurs f o r  values of V t  between -0.1 V and G.1 V .  This drop then gives 
tne  current ,  IS,due t o  1/2 the  s l o w  ions formed. This current ,  I,, w a s  meas
ured for each s e t  of parameters ( i . e . ,  beam energy and react ion chamber pres
s u r e ) .  The path length of t he  primary ions i n  the  thermal gas was accura te ly  
defined by t h e  dis tance between g r id  N o .  2 and the  t a r g e t  and held constant 
throughout t he  measurements. Ions formed outs ide the  reac t ion  chamber were 
a t t r a c t e d  t o  g r i d  N o .  1and thus d id  not introduce an e r r o r  i n to  the  cross-
sect ion da ta .  If we l e t  If represent  t h e  t a r g e t  current  with Vt = 0.1 V 
( i . e . ,  t he  primary ion cur ren t )  and Io be the  current a t  the  entrance of the  
react ion chamber (z  = O ) ,  then the  cross sect ion may be calculated by using 
the beam a t tenuat ion  formula 

If = Io exp 
(-anz) 

which, since Io = If + 2IS,  may be wr i t ten  

If = (If + 2rs)exp 
(-onz) 

= (If + 21,)eq 
(-azP/kT 

where z i s  t h e  path length of t h e  ions i n  the  thermal gas,  n = P/kT i s  the  
number dens i ty  of t h e  thermal gas,  P i s  the  absolute pressure in  the  reac t ion  
chamber, T i s  t h e  absolute temperature of t he  react ion chamber w a l l s ,  and k 
is  Boltzmann's constant.  

For each value of the  ion beam energy, Is w a s  measured a t  four  d i f f e ren t  
pressures.  Values of 2n [If/(If+ 21s) ] were p lo t t ed  as a function of r e l a 
t i v e  pressure,  and the  slope of t he  curve w a s  determined. Typical curves of  
t h i s  type a re  shown i n  f igure  5 .  The path length z w a s  measured d i r e c t l y ,  
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and P w a s  determined by ca l ib ra t ing  the  ion gage with McLeod gage measure
ments of the  pressure ins ide  the  reac t ion  chamber. Values of d were then 
calculated by use of  the  equation 

o = c E (s lope)z 

where C i s  determined by the  ca l ib ra t ion  of t he  ion gage. Each da ta  point  
on the  cross-section curves then is  determined by measurements a t  four d i f f e r 
en t  pressure l e v e l s .  

Since the  primary ion beam energy w a s  18 eV or l e s s ,  it w a s  assumed t h a t  
no secondary e lec t rons  were e j ec t ed  f r o m t h e  m e t a l  sur faces .  The coef f ic ien t  
f o r  secondary e lec t ron  emission from metal surfaces  being s t ruck  by ions of 
25 eV energy i s  expected t o  be on the order of lo-*. In  any case the  p lo t  of 
t a r g e t  current as a funct ion of t a r g e t  voltage r e l a t i v e  t o  the  reac t ion  cham
ber  (see f i g .  4 ( a ) )  should show this  e f f e c t  i f  it i s  present .  A s  the  t a r g e t  
voltage i s  increased, g r i d  No. 3 i n  e f f e c t  becomes a secondary e lec t ron  sup
pressor .  The absence of a drop i n  current  with a small voltage increase i n  
the  upper curve, f igure  &(a ) ,  shows t h a t  if  secondary e lec t rons  a r e  emitted, 
they a r e  too few t o  be detected and hence can be neglected.  

FESULTS AND DISCUSSION 

In order t o  understand the  charge exchange da ta  obtained f o r  t h i s  r epor t ,  
it i s  important t o  note w h a t  happens t o  e l a s t i c a l l y  sca t t e red  p a r t i c l e s .  In  
the following discussion we in t e rp re t  the  curves i n  f igu re  4 ( a ) .  We then show 
that  the  measured charge exchange cross  sect ions include near ly  a l l  t he  charge 
exchange whether accompanied by e l a s t i c  s ca t t e r ing  or not .  It w i l l  be shown 
t h a t  they do not include e l a s t i c  s ca t t e r ing  unaccompanied by charge exchange, 
except f o r  the  presumably r a r e  cases of la rge  angle de f l ec t ion .  

The data i n  f igures  &(a )and 4 ( b )  show tha t  as the  t a r g e t  voltage w a s  
r a i sed  very s l i g h t l y  above the po ten t i a l  of the  reac t ion  chamber, the  current  
dropped sharply.  This w a s  c l e a r l y  due t o  repuls ion of slow ions formed by 
charge exchange between the  ambient gas i n  the  chamber and the  incident ions .  
Figure &(a)a l so  shows tha t  no such drop i n  current  occurred with only back
ground gas (P  < lov6 t o r r )  i n  t he  chamber. 

Since no momentum t r a n s f e r  needs t o  accompany the  resonant reac t ion ,  most 
of t h e  slow ions should have a thermal energy d i s t r i b u t i o n  appropriate t o  
approximately 300° K ,  t he  w a l l  temperature of the  reac t ion  chamber. As 
pointed out e a r l i e r ,  only ha l f  of the  thermal ions would reach the  co l l ec to r ,  
s ince  a t  thermal equilibrium half  t he  molecules a r e  moving away from it. Dif
ferences i n  p o t e n t i a l  along t h e  surface of the  co l l ec to r  cause the  drop i n  
current  versus re ta rd ing  p o t e n t i a l  curve t o  be spread over a small voltage 
range ( f i g .  4 ( b ) ) .  Because of t he  presence of these  contact po ten t i a l  d i f f e r 
ences the  co l l ec to r  must be 0.1 V negative t o  measure a l l  the slow ion cur
r e n t  d i rec ted  toward the  co l l ec to r  and 0.1 V pos i t i ve  t o  r epe l  that  cur ren t .  
(Note that  the  c lose ly  spaced g r i d  i n  f r o n t  of the co l l ec to r  prevents t h i s  



f i e l d  from penetrat ing the  reac t ion  chamber far enough t o  draw i n  t h e  o ther  
ha l f  of t he  slow ions moving away from the  c o l l e c t o r .  ) Par t  of t he  broadening 
of the  voltage range over which the  slow ion cur ren t  decreases results from the  
range of thermal energies ,  but  a t  300° K t h i s  i s  only about 0.03 eV - somewhat 
l e s s  than the  expected contact po ten t i a l  d i f f e rences .  

Most of t h e  runs showed an addi t iona l  decrease of the  t a r g e t  current  as 
the  re ta rd ing  p o t e n t i a l  w a s  increased above 0.1 V.  This should give a measure 
of angular s ca t t e r ing ,  because sca t t e red  ions reach the  de tec tor  with l e s s  
a x i a l l y  d i r ec t ed  k i n e t i c  energy. Indeed the  e n t i r e  re ta rd ing  p o t e n t i a l  curve 
beyond V = 0.1 V i s  a f f ec t ed  p r inc ipa l ly  by angular s ca t t e r ing  and the  
energy spread i n  t h e  incident  beam. Since the  curve taken without gas i n  the  
chamber a l s o  revea ls  t he  energy dispers ion i n  t h e  incident  beam, the  e f f e c t s  
of angular s c a t t e r i n g  may be i so l a t ed .  Attenuation of the current by re ta rd
ing po ten t i a l s  s l i g h t l y  above 0.1 V i s  d i r e c t l y  proport ional  t o  the  number of 
incident  ions which have experienced charge exchange i n  addi t ion t o  a small 
angle e l a s t i c  c o l l i s i o n ,  plus  the  number which have experienced l a rge  angle 
sca t t e r ing  without charge exchange ( the  l a t t e r  number being negl ig ib le  accord
ing t o  theo ry ) .  Attenuation of the  current  near t he  end of the  d i s t r i b u t i o n  
( V t  = 8 V i n  f i g .  4 ( a ) )  r e s u l t s  from re t a rda t ion  of ions which have suf fered  
l a rge  angle sca t t e r ing  with charge exchange o r  small angle sca t t e r ing  without 
charge exchange. The l a t t e r  e f f e c t  i s  expected t o  be dominant, but  it i s  
obscured by the  energy dispers ion i n  the  beam. For t h i s  reason we have not 
yet  attempted t o  make a quant i ta t ive  est imate  of d i f f e r e n t i a l  s ca t t e r ing  cross  
sect ions from our d a t a .  An addi t iona l  complication a r i s e s  from i n e l a s t i c  
c o l l i s i o n s .  These would reduce the  a x i a l  k i n e t i c  energy, but  would be i n t e r 
preted as purely e l a s t i c  angular s ca t t e r ing  i n  t h e  method j u s t  descr ibed.  

Consideration of Angular Sca t te r ing  

We must now est imate  the  angular s ca t t e r ing  which p a r t i c l e s  may s u f f e r  
and s t i l l  be included i n  t h e  charge exchange measurement. The da ta  f o r  t h i s  
repor t  were obtained by comparing the  current  a t  V t  = 0.1 V with t ha t  a t  
-0.1 V.  Thus a n e u t r a l  ambient gas molecule of N2 o r  A i n i t i a l l y  a t  rest 
could pick up as much as 0.1 eV i n  the charge exchange co l l i s ion  and s t i l l  be 
repe l led  by t h e  re ta rd ing  p o t e n t i a l  f i e l d .  If t h e  ambient molecule gained 
0.1 eV, then the  incident  ion l o s t  0.1 eV i n  the  c o l l i s i o n .  I f  we denote the  
t ransverse and a x i a l l y  d i rec ted  energy of the  incident  ions by E t  and Ea ,  
respect ively,  and the  corresponding momenta by pt and pa, and use primes t o  
denote these  quan t i t i e s  a f t e r  the  co l l i s ion ,  then by conservation of momentum, 

and by conservation of energy, 

The (1)r e f e r s  t o  the  incident p a r t i c l e  and the  (2)  t o  the  s t ruck  particle. 
We a r e  concerned with t h e  case i n  which Ea ' (2)  5 0.1 eV. We wish t o  know the  
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maximum angle of de f l ec t ion  of the incident p a r t i c l e  

e,, = a rc t an  p t l  ( l ) / pa l  (1) 

Solution of t he  above equations using equal masses f o r  incident  and s t ruck 
p a r t i c l e s  and the  i d e n t i t y  p2/2m = E, y ie lds  a f t e r  considerable algebra: 

If we l e t  R = Eaf(2) /Ea( l )  then 

The angles e,, f o r  severa l  incident  ion energies appear i n  t a b l e  I. 

Since OUT measured cross  sect ions a r e  f o r  charge exchange i n  which the  
incident p a r t i c l e  was sca t t e red  by l e s s  than e,, and s ince it i s  well  known 
(ch. 4, r e f .  2 )  that  ion sca t t e r ing  i s  pr imari ly  i n  a forward d i r ec t ion  a t  
much smaller angles than emX, the  values measured a r e  e s s e n t i a l l y  a t o t a l  
charge exchange cross  sec t ion .  

A s  mentioned above, t he  measured cross sec t ions  a l s o  include a contribu
t i o n  from ions sca t t e red  a t  l a rge  angles t h a t  d id  not experience charge 
exchange. We must ca lcu la te  the  minimum sca t t e r ing  angle t h a t  would permit 
such ions t o  be retarded by 0.1 V ( i . e . ,  E a l ( l )  5 0.1 eV) . Using the  equa
t i o n s  �or conservation of energy and momentum we f i n d  

where Q = E a ( l ) / E a l ( l ) .  

Then 0min = a rc t an  (Q 1/2 - 1)1/2. A t  E a ( l )  = 0.5 eV, emin = 48' and a t  
10 eV, 70.3'. While the  angular s ca t t e r ing  w i l l  be a subject  of fu ture  
invest igat ion,  it i s  inferred from experimental da ta  on atoms a t  thermal ener
g i e s  (ref.  2 )  t h a t  s ca t t e r ing  in to  angles g rea t e r  than 8min w a s  negl ig ib le  
compared with the  charge exchange process i n  the  range of energies s tudied.  
Thus the  measured cross  sect ions a r e  f o r  charge exchange. They include charge 
exchange processes i n  which e l a s t i c  s ca t t e r ing  a l s o  took place.  They do not  
include much e l a s t i c  s ca t t e r ing  without charge exchange. 
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Charge Exchange Cross Sections 

Experimental values obtained f o r  t h e  charge exchange cross sect ion of 
argon are l i s t e d  i n  t a b l e  I1 and shown graphica l ly  i n  f igure  6(a) .  They a r e  
compared with other  measurements and with theory i n  f igure  6 ( b ) .  The spread 
i n  OUT da ta  i s  believed t o  result pr imari ly  from f luc tua t ions  i n  the  beam 
current .  The randomness of the  f luc tua t ions  from a smooth curve suggests t h a t  
there  i s  no s t ruc tu re  i n  the  ac tua l  curve f o r  cross  sect ion as a function of 
energy. A s  seen f rom f igu re  6 (b )  t h e  cross  sect ions may be described by t h e  
r e l a t i o n  01/2 = a - b 2n E with a = 7.49XLO-8 em and b = 0.73x10-8 em. The 
good agreement with ex i s t ing  experimental da ta  ( r e f s .  llYl2,l3)and with theory 
( r e f s .  4,3) serves as a favorable check on our apparatus and method. 

Since t h e  argon ions were formed from 40 eV e lec t rons ,  there  i s  a possi
b i l i t y  t ha t  some were i n  metastable s t a t e s  during the  reac t ion .  Experiments 
by Amme and Hayden ( r e f .  9) with argon ions formed f rom 16 t o  40 eV e lec t rons  
show a negl ig ib le  e f f ec t  of exci ted s t a t e s  on cross  sect ions between ion 
energies of 50 and 1000 eV. 

The measured values of the  charge exchange cross sect ion f o r  t h e  nitrogen 
react ion a re  l i s t e d  i n  t a b l e  I11 and shown graphica l ly  as a function of energy 
i n  f igure 7 ( a ) .  Comparison with an extrapolated curve ( r e f .  14 )  i s  made i n  
f igure  7(b)  again using the  r e l a t i o n  01/2 = a - b 2n E with a = 6.48~10-8 em 
and b = 0.24x10-8 em. 

There appears t o  be a d e f i n i t e  hump i n  t h e  nitrogen curve a t  8.5 eV. This 
peak w i l l  be shown t o  suggest t h e  presence of a v ib ra t iona l ly  excited s t a t e  i n  
the  incident ion beam. In  discussing Massey's ad iaba t ic  hypothesis as applied 
t o  nonresonant charge t r a n s f e r ,  McDaniel ( r e f .  2 )  suggests t h a t  cross sect ions 
f o r  such reac t ions  should a t t a i n  a peak value when the  ve loc i ty  of the  incident 
p a r t i c l e  i s  near v = 26E/h, where 6E i s  the  energy defect  ( i . e . ,  t he  change 
i n  in t e rna l  energy r e su l t i ng  f rom the  reac t ion)  and 2 i s  the  ad iaba t ic  
parameter f o r  a l a rge  number of various in t e rac t ions .  Note t h a t  our observed 
peak came a t  8.5 eV = 1/2 mv2 = m[ 22(AE)2]/h2. The corresponding energy 
defect  i s  0.046 eV. This could e a s i l y  be iden t i f i ed  with e i t h e r  of the  
reac t  ions 

N2+(v = 2)  t N 2 ( v  = 0) -+ N 2 ( v  = 1)+ N2+(v = 1) - 0.04 eV 

-+ n 2 ( v  = 2) + n2+(v = 0) + 0.06 e V  

which a r e  mentioned by J. W. McGowan e t  a l .  ( r e f .  15) as possible nonresonant 
react ions i n  nitrogen charge exchange s tudies .  

The increase in  cross sec t ion  above the  a - b 2n E curve a t  low energies 
may be due p a r t l y  t o  e l a s t i c  s ca t t e r ing .  However, t he  absence of  t h i s  depar
t u r e  from the  logarithmic behavior i n  our  argon data  suggests t h a t  a r e a l  
difference between ac tua l  and extrapolated nitrogen charge exchange cross sec
t ions  has been found below 3 eV. The question w i l l  have t o  be decided by 
improved da ta  of  t h e  type i n  f igure  4(b)  and by cross-section measurements a t  
s t i l l  lower energies .  
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Discussion of Errors  

The accuracy o f  t he  cross  sec t ions  m y  be determined from the  accuracy of 
the  four  measured quan t i t i e s  used t o  ca l cu la t e  them, namely, the  r e l a t i v e  
current  t o  the  t a r g e t  IJIz, the  pressure d i f fe rence  P = P1 - Pz7 t h e  tem
perature  T,  and the e f f e c t i v e  reac t ion  chamber length  z .  (11and Iz a r e  
the  t a r g e t  cur ren ts  when the  reac t ion  chamber pressures  are P1 and P2, 
respec t ive ly . )  Since 

by  taking d i f f e r e n t i a l s  of both s ides  of t he  equation f o r  o and then dividing 
by o, we obtain 

The e r r o r  i n  t h e  temperature stems mainly from di f fe rences  i n  temperature 
i n  t h e  reac t ion  region and a t  the  loca t ion  of t he  thermometer. This could not 
have been more than about 1’ C ,  s ince  the  sources of temperature grad ien ts  
(cold t r a p s  and hot f i laments)  were well  removed from the  reac t ion  region; 

I thus,  AT/T - 0.003. 

The d i f fe rence  i n  path length  i s  about 0.03 inch out of a t o t a l  l ength  of about 
2 inches causing a 2.5-percent uncer ta in ty  i n  path length .  The appl ica t ion  of 
an e l e c t r i c  f i e l d  between the  t a r g e t  and g r i d  No. 3 shortens the  e f f ec t ive  

Uncertainty i n  determining the  pressure must be t h e  l a r g e s t  contr ibut ion 
t o  systematic e r r o r .  The reading e r r o r s  of t he  McLeod gage a t  t y p i c a l  operat
ing pressures  P1 = 2.3X1OP4 t o r r ,  P2 = 1 .2Xl .O-3  t o r r  were given by t h e  manu
fac tu re r  as t2.5X10-6 t o r r  and +5.0X10-6 t o r r ,  respec t ive ly .  St icking of t he  
mercury d id  not appear t o  be a problem, provided the  gage w a s  tapped vigor
ously before being read. Measurements were qui te  reproducible (?? percent)  
even f o r  d i f f e r e n t  opera tors .  If we add t o  the  McLeod gage reading e r r o r  of 
P = 22 percent,  t h a t  of t he  ion gage tO.02, we ge t  m/P = t0.04. 

Recently Rothe ( r e f .  1 6 )  , and I s h i i  and Nakayama. ( r e f .  17) reported t h a t  
t h e  pumping of mercury by the  cold t r a p  between the  McLeod gage and t h e  vacuum 
system could lead  t o  an e r r o r  of up t o  25 percent i n  t h e  pressure ca l ib ra t ion  
when the  McLeod gage measurements a re  taken a t  room temperature. O u r  da ta  do 
not  take  t h i s  e f f e c t  i n t o  account. If one d e s i r e s  t o  cor rec t  our da ta  f o r  t h i s1 
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e f f e c t ,  using the  procedure suggested by I s h i i  and Nakayama, then the  cross  
sec t ion  values should be reduced by 4 percent .  

The uncer ta in ty  i n  the  current  r a t i o  Id12 i s  caused pr imar i ly  by 
f luc tua t ions  i n  t h e  beam curren t .  These were l a r g e r  a t  lower energies .  From 
the  char t  recorder  records of these  cur ren ts  one obtains  A . I l / I l  - 0.07 a t  
0.5 e V ,  0.01 a t  1 e V ,  0.01 a t  5 e V ,  0.01 a t  10 eV with nea r ly  i d e n t i c a l  values  
f o r  L&/12. The l i m i t s  of e r r o r  (as ide  from t h e  possible  pressure cor rec t ion  
due t o  t h e  pumping of mercury) ca lcu la ted  from the  sources discussed are tabu
l a t e d  below as a funct ion of energy: 

0.25 0.5 eV 

.10 1.0 eV 

.10 5.0 e V  

.10 10.0 e V  

The energy values quoted above are made uncertain by t h e  contact p o t e n t i a l  
d i f fe rences  along the  surface o f  t he  t a r g e t .  These d i f fe rences  vary about t he  
average surface p o t e n t i a l  by k O . 1  V o r  l e s s .  

Further Applications and Techniques 

The techniques discussed i n  t h i s  repor t  may be extended t o  o ther  resonant 
reac t ions .  Nonresonant reac t ions  pose t h e  problem of decreasing cross  sec
t i o n s  a t  low energies .  A s  the  beam s t a b i l i t y  and current  i n t e n s i t y  decrease 
with decreasing energy, the quant i ty  t o  be measured g e t s  smaller i n  cont ras t  
t o  t h e  s i t u a t i o n  with resonant reac t ions .  In  order t o  study nonresonant reac
t i o n  a t  low energies  it w i l l  be necessary t o  improve the  beam s t a b i l i t y .  

Increased beam s t a b i l i t y  w i l l  a l s o  improve the  chances of obtaining 
angular s ca t t e r ing  da ta  from the  re ta rd ing  p o t e n t i a l  curves. In  making current  
versus re ta rd ing  po ten t i a l  measurements, t h e  current  must remain constant as 
the  vol tage i s  var ied .  The vol tage of t he  co l l ec to r  may be var ied w i t h  high 
speed, provided s u f f i c i e n t  current  may be co l lec ted  a t  each vol tage l e v e l  t o  
be measurable. Using an e lec t ron  mul t ip l i e r  f o r  de tec t ing  very low s igna l  
l e v e l s  i s  common. Individual  ions a r e  detected and counted. An apparatus of  
modified design i s  being b u i l t  t o  incorporate such a low l e v e l  de t ec to r .  D a t a  
taken with t h i s  kind of apparatus should be less  sens i t i ve  t o  beam f luc tua
t i o n s ,  s ince t h e  re ta rd ing  po ten t i a l s  can be var ied  much f a s t e r  than t h e  beam 
f luc tua te s .  
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CONCLUSION 

A new method of measuring cross  sec t ions  f o r  charge exchange and e l a s t i c  
s ca t t e r ing  a t  energies down t o  0.5 eV has been described and t e s t e d .  

Charge exchange cross  sec t ions ,  IS, have been measured f o r  argon ions i n  
~ 

I argon and ni t rogen molecular ions i n  ni t rogen a t  energies ,  E ,  between 0.5 and 
17  eV. The argon cross sec t ions  are described by t h e  r e l a t i o n  

D’’~ = a - b ln E 

with a = 7.49x10-8 em, b = 0.73x10-8 em and E i n  e V .  This i s  i n  agreement 
with t h e  work of other  inves t iga tors .  The ni t rogen cross sec t ions  a r e  
described approximately by the  same r e l a t i o n  but with a = 6.48aO-8 em, and 
b = 0.24X10-8 em. The ni t rogen cross  sec t ions  d i f f e r  s l i g h t l y  from t h e  values 
given by t h i s  r e l a t i o n  a t  8.5 eV and are considerably l a r g e r  below 3 eV. A t  
1 eV our da ta  y i e ld  a cross  sec t ion  of 59X10-16 em2 compared t o  the  loga r i th 
mical ly  extrapolated value of 42~l.O- em2 . 

While no ana lys i s  w a s  made of t h e  f r ac t ion  of exci ted molecular ni t rogen 
ions,  a hump i n  the  cross  sec t ion  versus energy curve appears t o  be associated 
with the  presence of v ib ra t iona l ly  exci ted s t a t e s  i n  the  ion beam. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Cal i f . ,  Oct. 19, 1965 



APPENDIX 

SYMBOLS 

C 

E 

h 


I O  

I2 

If 

I S  

k 

constants  


ca l ib ra t ion  constant 


energy 


axial  k i n e t i c  energy of' incident  p a r t i c l e  before  c o l l i s i o n  


axial  k i n e t i c  energy o f  incident  p a r t i c l e  a f t e r  c o l l i s i o n  


axial  k i n e t i c  energy of s t ruck p a r t i c l e  a f t e r  c o l l i s i o n  


t ransverse  k i n e t i c  energy of incident  p a r t i c l e  af ter  c o l l i s i o n  


t ransverse  k i n e t i c  energy of  s t ruck  p a r t i c l e  a f t e r  c o l l i s i o n  


Planck's constant 


current  i n to  entrance of the  reac t ion  chamber 


t a r g e t  current  when pressure i s  PI 


t a r g e t  cur ren t  when pressure i s  P2 


fast  ion current  reaching t a r g e t  


curren t  t o  t a r g e t  due t o  1/2 the  slow ions formed by charge exchange 


Boltzmann's constant 


ad iaba t i c  parameter (experimentally determined constant)  


n a t u r a l  logarithm 


mss 


number of molecules per u n i t  volume i n  reac t ion  chamber 


momentum 


absolute  pressure i n  r eac t ion  chamber 


I 
I 

I 

~ 

I 

~ 

I 

, 
values  o f  pressure i n  reac t ion  chamber 

axial  momentum of incident  p a r t i c l e  before c o l l i s i o n  



R 


T 

t o r r  

v t  
Z 

6E 


n 

'min 

axial  momentum of incident  p a r t i c l e  after co l l i s ion  

axial  momentum of s t ruck  p a r t i c l e  a f t e r  c o l l i s i o n  

t ransverse momentum of incident  p a r t i c l e  af ter  c o l l i s i o n  

t ransverse momentum of s t ruck p a r t i c l e  a f t e r  c o l l i s i o n  

r a t i o  of axial  k i n e t i c  energy of incident  p a r t i c l e  before c o l l i s i o n  
t o  t h a t  af ter  t h e  c o l l i s i o n  

r a t i o  of axial  k i n e t i c  energy of s t ruck  p a r t i c l e  a f t e r  c o l l i s i o n  t o  
t h a t  of incident  p a r t i c l e  before the  c o l l i s i o n  

absolute  temperature i n  reac t ion  chamber 

pressure exer ted by 1mm Hg a t  273O K 

ve loc i ty  

t a r g e t  vol tage with respect  t o  reac t ion  chamber 

e f f ec t ive  path length  of ions i n  the  thermal gas 

change i n  i n t e r n a l  energy of a system re su l t i ng  from a reac t ion  

d i f f e r e n t i a l  operator  

minimum sca t t e r ing  angle experienced by an incident  p a r t i c l e  such 
t h a t  i t s  f i n a l  axial  k i n e t i c  energy i s  l e s s  than 0 . 1  e V  

maximum angle of de f l ec t ion  experienced by incident  p a r t i c l e  i n  a 
c o l l i s i o n  such t h a t  the  a x i a l l y  d i r ec t ed  energy of the  s t ruck  
p a r t i c l e  af ter  c o l l i s i o n  i s  less  than 0 .1  eV 

v ib ra t iona l  quantum number 

charge exchange cross  sec t ion  

V 
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TABU I e - MAXIMUM ANGLE O F  DEFZECTION OF I N C I D E N T  I O N S  SUCH THAT 
E a ' ( 2 )  -< 0.1 eV 

0-5 0.2 0.90 42 
1.o .1 .68 34.2 
2 .o 
5 *o 

-05 
.02 

-537 
.40> 

28.3 
22 .o 

10 .o .01 333 18.4 
20 .o .005 * 309 17.2 

TABLE 11.- CHARGE EXCHANGE CROSS SECTIONS (5 AS A FUNCTION O F  ENERGY E 
FOR A+ I O N S  INCIDENT ON ARGON GAS 

E,
eV 

E,
eV 

(5,

IO-= em2 

17.o 32 -9  5 -5  43.1 
16.5 25.2 4.9 41.7 
15.i 30 - 5  4 -5  46.2 
14.O 35 -3  4.3 43.7 
13.9 29 .o 3 -7  40 .O 
1 3.o 30 .i 3 *5 48.3 
12 .o 32 *5 2 *3 47.6 
12 .o 35 - 3  2.2 47 -9  
10.8 35.4 2 -9  41.7 
10.7 36.8 1.6 50.4 

9.7 30 .i 1.O 51.4 
9.1 39.2 0.4 65 .o 
9.0 41.7 
8.5 28.8 
8 .o 39.6 
7.9 31-5  
6 -7  35.3 
6 .1  38.2 
5 05 35 -4 
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TAEZE 111.- CHARGE EXCHANGE CROSS SECTIONS 0 AS A FUNCTION O F  ENERGY E 
FOR N 2 +  I O N S  INCIDENT ON NITROGEN GAS 

16.7 34.8 5 *8 33*7 
i6.o 35-1 5-6 34.7 
14.6 
13.8 

35-2 
35-3 

5-0
4.6 

35-7
36.2 

12.o 
11.8 

33-0
34.4 

4.5
4.O 

34.9 
37-2 

10.8 
io.6 
10.2 

35-1
34.8 
34.6 

3-6 
3.4 
3-0 

3706 
37.8 
39-0 

9.7 36.2 2.6 40.O 

9.5 36.6 2.4 44.1 
9.0 36.9 2.o 42.5 
8.8 37-0 1.5 46.5 

8.4 36.4 1.3 57.7 

7.9 34.2 1.2 51.8 

7.7 37-2 0.8 65.8 

7-2 34-5 095 96.7 

6.8 33-5 

6.7 32-7

6.1 	 34.7 
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Figure 1.- Ion beam accelerator. 



15 
Amps 

95 or 4 0 V  

II IlAl Magnetic field solenoids 

C X l T  --I 

aperture ASCXII
I 

Reaction chamber 

electrodes 
- /// T a ' y i e t l o n  insulator 

1-22 t o  t 2 2 v  
Analyzing@ I I l l  I MII I  

1,I 

I 

magnet T o  
Pump 

Grid I 
Grid 2J 

-I---
Figure 2.- Schematic diagram of ion accelerator. 


i 




I I I I I I I I I 

Target voltage ,volts 

Figure 3.- Target current as a function of ta rge t  voltage r e l a t ive  t o  source voltage. 
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Figure 4.- Target current as a function of t a r g e t  po ten t ia l  r e l a t i v e  t o  react ion chamber poten t ia l .  
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Figure 4 .  - Concluded. 
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Figure 6.- Charge exchange cross sec t ion  as a function of energy f o r  A' ions incident on argon gas .  
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cross section as a function of energy f o r  N2+ ions incident on nitrogen gas. 
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